Exercises of Derivatives Math 161 - Fall 2014

1. Use the definition of derivation to the following functions

(a)
$$f(x) = x^2 + x + 4$$

(b) $g(t) = \frac{1}{t+3}$
(c) $h(x) = \sqrt{x+4}$

2. Compute the derivative of the following functions and simplify if possible

(a)
$$f(x) = x^{33} + 4x^{12} + 3x^4 + \sqrt{42}x$$

(b) $g(y) = \sin y + \cos y + \tan y$
(c) $h(t) = (t^4 + 6) \sin t$
(d) $f(s) = \cot s$
(e) $g(x) = \frac{1}{\pi}x^{\pi} - x$
(f) $h(z) = \frac{\sin z}{z^3 + z^2 + 3z + 1}$
(g) $r(x) = \sqrt{x}(x^3 + 3x + 3)$
(h) $F(v) = \frac{v^3 + 3v^2 + 4}{v}$
(i) $Q(y) = (1 - y^{-1})^{-1}$
(j) $R(m) = \sqrt[5]{\frac{m^2}{\sec m}}$
(k) $S(p) = (p^3 + 2p^2 + 4)^5(3p^2 + 4)^3$
(l) $T(x) = \frac{(x - 1)(x - 4)}{(x - 2)(x - 3)}$
(m) $G(z) = \sin 3z \cos 3z$
(n) $H(t) = t^4 \sin t \cos t$
(o) $f(x) = \sqrt{\sin \sqrt{x^2 + 5}}$
(p) $g(t) = \frac{t^3}{\sqrt{(t^4 + 1)}}$
(q) $p(v) = (v^3 + v + 4)^5(2v^3 + 3v^2 + 2)^4$

(r)
$$\phi(x) = \frac{1}{\sqrt[3]{x + \sqrt[3]{x}}}$$

(s) $\psi(t) = \sin^2\left(\frac{t^3 + 1}{t^2 + 2t}\right)$

3. Calculate the first and second derivative of the following functions

(a)
$$y = \frac{x^2 - 2\sqrt{x}}{x}$$

(b) $v = \sqrt[5]{u^3} - 4\sqrt[7]{u^{11}}$
(c) $z = \cos(x^2)$

- 4. Find the equation of the tangent line and the normal line to the curve at the given point
 - (a) $y = x^2 + x + 3$ at x = 1
 - (b) $y = \sqrt{1 + x^3}$ at x = 2
 - (c) $y = 6 \cos x$ at $(\frac{\pi}{3}, 3)$
 - (d) $y = \sin(\sin(x))$ at $(\pi, 0)$
- 5. The position of a particle is given by $s(t) = t^3 12t + 3$, where t is measured in seconds and s in meters.
 - (a) Find the velocity and acceleration functions.
 - (b) Determine when the particle is at rest.
- 6. Find $\frac{d^{74}}{dx^{74}}(\sin x)$
- 7. Find the n-th derivative of $f(x) = x^n$
- 8. For what values of x does the graph of $f(x) = x^3 6x^2 15x + 4430$ have a horizontal tangent line?
- 9. Show that the curve $y = 12x^3 + 10x 3$ has no tangent line with slope 8.
- 10. If f and g are a differentiable functions, find an expression for the derivative of each of the following function

(a)
$$y = x^n f(x)$$

(b)
$$y = \frac{1 + xf(x)}{\sqrt[3]{x^2}}$$

(c)
$$y = x^3 f(x^5)$$

(d)
$$y = \frac{f(x)g(x)}{f(x) + g(x)}$$

- 11. Suppose that h(x) = f(x)g(x) and F(x) = f(g(x)), where f(2) = 3, g(2) = 5, g'(2) = 4, f'(2) = -2 and f'(5) = 11. Find a) h'(2) and b)F'(2)
- 12. Evaluate the following limits (By expressing the limit as a derivative)

(a)
$$\lim_{x \to 1} \frac{x^{4000} - 1}{x - 1}$$

(b) $\lim_{h \to 0} \frac{\sqrt[4]{16 + h} - 2}{h}$

- 13. Find $\frac{dy}{dx}$ by implicit differentiation
 - (a) $y \cos x = x^2 + y^2$ (b) $x \sin y + y \sin x = 1$ (c) $4 \cos x \sin y = 1$
- 14. Find y'' by implicit differentiation
 - (a) $x^3 + y^3 = 1$ (b) $9x^2 + y^2 = 9$
- 15. Use implicit differentiation to find an equation of the tangent line to the curve at the given point
 - (a) $x^2 + 4xy + y^2 = 13$, (2, 1) (b) $2(x^2 + y^2)^2 = 25(x^2 - y^2)$, (3, 1)
- 16. The length of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 10 cm/s. When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?

- 17. Air is being pumped into a spherical balloon so that its volume increases at a rate of $300 \text{ m}^3/\text{hr}$. How fast is the radius of the balloon increasing when the radius is 100 m?
- 18. Find the linear approximation of the function $g(x) = \sqrt[3]{x+1}$ at a = 0 and use it to approximate the numbers $\sqrt[3]{0.95}$ and $\sqrt[3]{1.1}$.